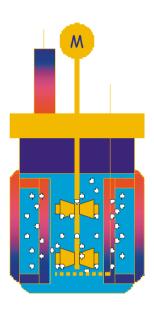


Produktion von Polysialinsäure aus *E.coli* K1

Ismet Bice
Universität Hannover
Institut für Technische Chemie
Callinstr. 5
30167 Hannover
Germany



Kultivierung: Batch

Kultivierungsbedingungen (batch)		
Temperatur	37 °C	
Rührgeschw.	1000 rpm	
pН	7,5	
Begasung	8 L/min	

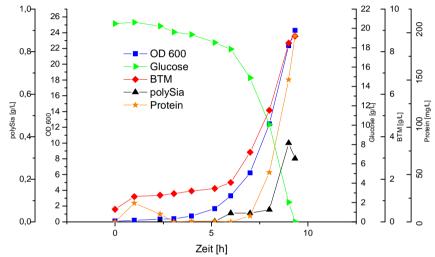
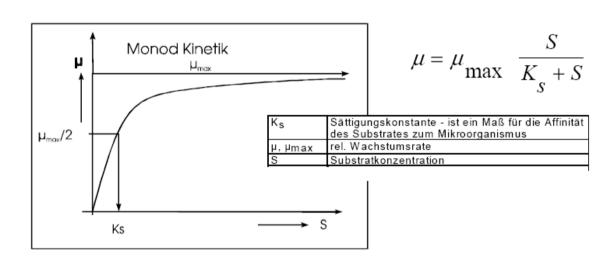


Abb.1: batch-Kultivierung im 10 L Biostat C

- 0,298 g/L polySia
- μ = 0,45 1/h

Ausbeutekoeffizient:


$Y_{X/S}$	Y _{P/X}	$Y_{P/S}$
0,397 g/g	0,0367 g/g	0,0153 g/g



Kultivierung: Fed-batch

Temperatur 37 °C / 37 °C

Rührgeschw. 1000 rpm / 150-1250 rpm

pH 7,5 /7,5

Begasung 10 L/min / 1-10 L/min

Kultivierung: Fed-batch

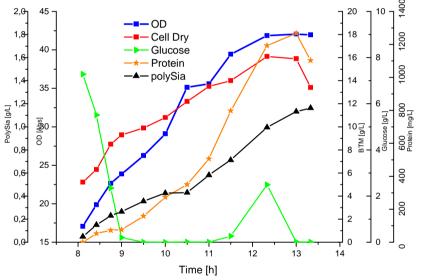


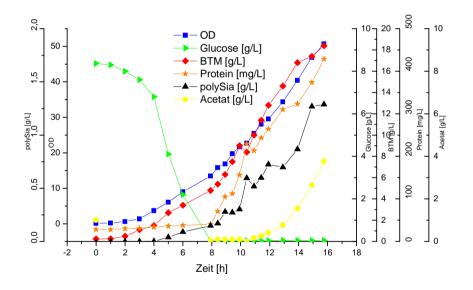
Abb.2: Fed-batch-Kultivierung im Biostat C (8L)

• 1,16 g/L polySia

Synthetisches Medium		(Vorlage/Feed)
Substrat	Glucose	20 g/L / 250 g/L
N-Quelle	$(NH_4)_2SO_4$	10 g/L / -
Puffer	KPP	0,08 M / 0,08 M
Salzlösung		1 mL/L / 2 mL/L

Ausbeutekoeffizient:

Y _{X/S}	Y _{P/X}	Y _{P/S}
0,2068 g/g	0,0867 g/g	0,0179 g/g



Kultivierung: Fed-batch

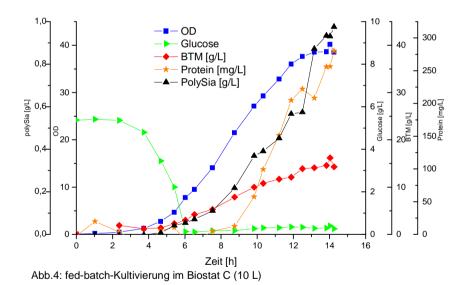
Synthetisches Medium		(Vorlage/Feed)
Substrat	Glucose	10 g/L / 250 g/L
N-Quelle	$(NH_4)_2SO_4$	10 g/L / -
Puffer	KPP	0,08 M / 0,08 M
Salzlösung		1 mL/L / 2 mL/L

Ausbeutekoeffizient:

Y _{X/S}	Y _{P/X}	Y _{P/S}
0,325 g/g	0,0698 g/g	0,0227 g/g

Abb.3: Fed-batch-Kultivierung im Biostat C (10 L)

• 1,29 g/L polySia



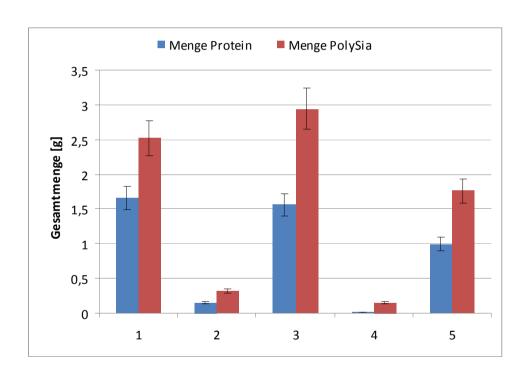
Kultivierung: Fed-batch

• 0,9752 g/L polySia

Synthetisches Medium		(Vorlage/Feed)
Substrat	Glucose	5 g/L / 200 g/L
N-Quelle	$(NH_4)_2SO_4$	10 g/L / -
Puffer	KPP	0,08 M / 0,08 M
Salzlösung		1 mL/L / 2 mL/L

Ausbeutekoeffizient:

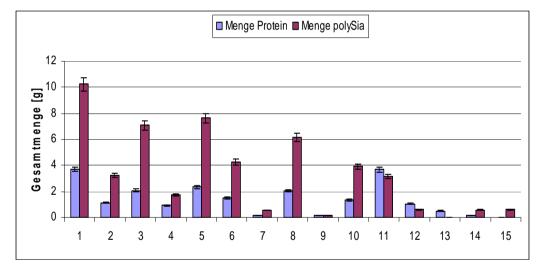
Y _{X/S}	Y _{P/X}	Y _{P/S}
0,3228 g/g	0,0682 g/g	0,0222 g/g



Aufreinigung: Batch

- 1. Überstand Reaktor nach Ernte
- 2. Ultrafiltration 0,45 µm Retentat
- 3. Ultrafiltration 0,45 µm Permeat
- 4. Ultrafiltration 10 kDa Permeat
- 5. Ultrafiltration 10 kDa Retentat

• Kont. Zentrifuge ersetzt durch Cross flow - Filtration



Aufreinigung: Fed- batch

- Überstand Reaktor nach Ernte
- 2. Ultrafiltration 0,45 µm Retentat
- 3. Ultrafiltration 0,45 µm Permeat
- 4. Ultrafiltration 0,45 μm Retentat nach Verdünnung mit dd H₂O
- 5. Ultrafiltration 0,45 µm Permeat nach Verdünnung
- 6. Ultrafiltration 10 kDa Retentat
- 7. Ultrafiltration 10 kDa Permeat
- 8. Retentat nach Fällung mit 45 % (v/v) Aceton, Überstand
- Acetonpellet resuspendiert in dd H₂O
- 10. Überstand nach Aceton Abrotation
- 11. nach Fällung mit Cetavlon, Überstand
- 12. Cetavlonpellet gelöst in 1M NaCl
- 13. Überstand nach Fällung mit 80 % (v/v) Ethanol
- 4. Pellet nach 80 % Ethanolfällung in dd H₂O resuspendiert
- 15. Nach 3 Tagen Adsorber

Verluste

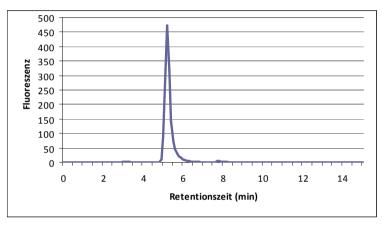
Durchschnittliche Verlustprozente an polySia während der einzelnen Aufreinigungsschritte von den Ernten aus Batch- und Fed-batch-Prozessen unter Berücksichtigung von Messfehlern der polySia- Konzentration:

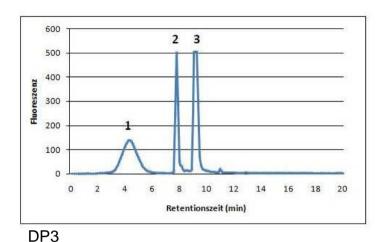
Reinigungsschritt	Batch	Fed-batch	
Ultrafiltration (0,45 µm)	1 bis 10 %	10 bis 40 %	
Ultrafiltration (10 kDa)	bis 30 %	30 bis 40 %	
Aceton-Fällung (45 %)	~ 10 %	12 bis 15 %	
Aceton-Fällung (>75 %)	< 10 % *	_	
Cetavlon-Fällung (10 g/L)	< 1%	> 74 %	
Ethanol-Fällung (80 %)	< 1 %	< 1 %	
Adsorber Ex M 1753	< 1%	< 1 %	
Gesamt	45-50 %	89- 95 %	

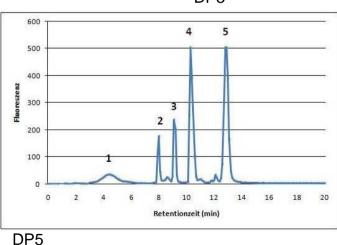
^{*} Bei 80 % (v/v) Aceton werden 100 % gefällt

DMB-HPLC

DMB-Markierung von polySia:

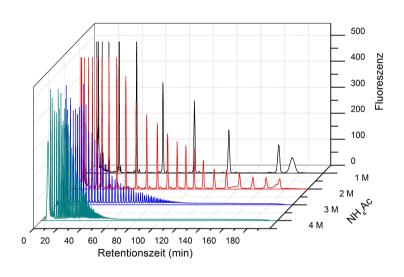

Schritt	Lösung/Behandlung	Volumen	Temperatur	Dauer
	Probe	10 μL (10 mg/mL) Probe + 70 μL dd H ₂ O		
Färbung	DMB-Reagenz	80 μL	8 / 50 ℃	5 / 24 h
Hydrolyse	40 mM TFA	80 μL		
Abbruch	1 M NaOH	20 μL	-	-



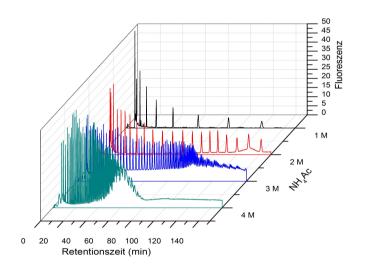


DMB: Standard (MHH, Abt.: Frau Prof. Dr.Gerardy-Schahn)

Neuraminsäure



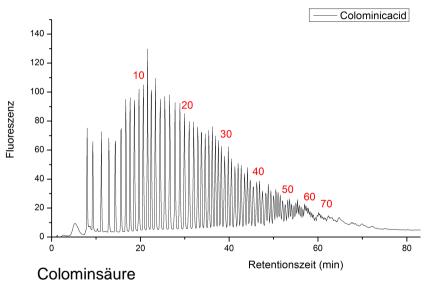
DMB: Optimierung

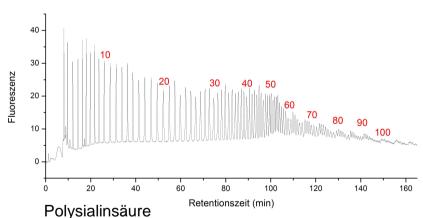

5 h bei 50 ℃

Optimal:

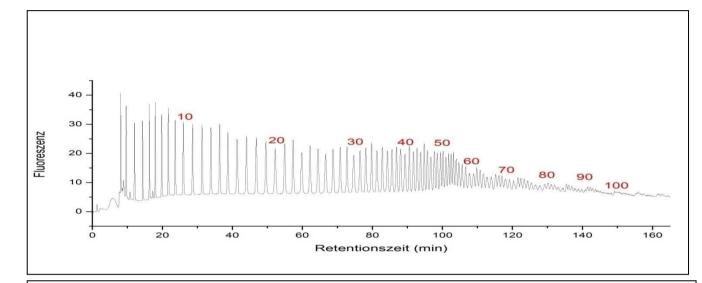
- → Reaktion bei 8 °C und 24 h
- → Laufmittel dd H₂O und 3-4 M NH₄Ac

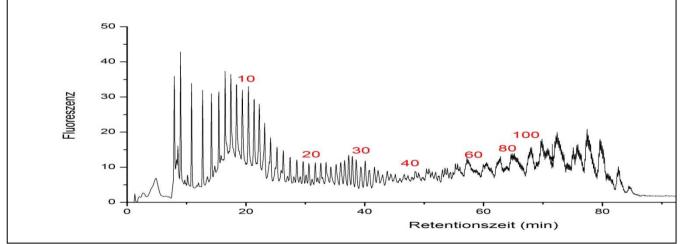
24 h bei 8 ℃





DMB: Colominsäure und Polysialinsäure





DMB: Batch und Fed-batch

batch

fed-batch

Ausblick

- Steuerung der Fed-batch-Kultivierung mit Unterschiedlichen Feed-Systemen
- Entwicklung eines neuen Aufreinigung Prozesses für die Fed-batch-Kultivierung
- Bestimmung der polySia-Kettenlänge während der Kultivierung

